CONVECTIVE COEFFICIENT (h) CALCULATIONS Chapter 7: External Flow

For a flat plate: For a cylinder or sphere:	$Nu_{x} = \frac{hx}{k}$ $\overline{Nu}_{D} = \frac{\overline{hD}}{k}$	$\overline{\mathrm{Nu}}_{\mathrm{L}} = \frac{\overline{\mathrm{hL}}}{\mathrm{k}}$
For a flat plate:	$\operatorname{Re}_{x} = \frac{\rho \operatorname{Vx}}{\mu} = \frac{\operatorname{Vx}}{\nu}$	$\operatorname{Re}_{L} = \frac{\rho V L}{\mu} = \frac{V L}{\nu}$
For a cylinder or sphere:	$Re_{D} = \frac{\rho VD}{\mu} = \frac{VD}{\nu}$	where V is the upstream velocity.

FLAT PLATE

For a flat plate, transition to turbulent flow occurs at Re $\sim 10^5 - 3 \times 10^6$

Isothermal

Laminar flow:	$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	Valid for $Pr \ge 0.6$
	$\overline{\text{Nu}}_{\text{L}} = 0.664 \text{Re}_{\text{L}}^{1/2} \text{Pr}^{1/3}$	Valid for $Pr \ge 0.6$
Turbulent Flow:	$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$	Valid for $0.6 \le \Pr \le 60$
Mixed Flow:	$\overline{\text{Nu}}_{\text{L}} = (0.037 \text{Re}_{\text{L}}^{4/5} - \text{A}) \text{Pr}^{1/3}$ $\text{A} = 0.037 \text{Re}_{\text{x,c}}^{4/5} - 0.664 \text{Re}_{\text{x,c}}^{1/2}$	Valid for $0.6 \le Pr \le 60$ $Re_{x,c} \le Re_L \le 10^8$
Evaluate properties at film temperature $T_f = \frac{T_s + T_{\infty}}{2}$		

Constant Heat Flux

Laminar flow:	$Nu_x = 0.453 Re_x^{1/2} Pr^{1/3}$	Valid for $Pr \ge 0.6$
	$\overline{Nu}_{L} = 0.680 \text{Re}_{L}^{1/2} \text{Pr}^{1/3}$	Valid for $Pr \ge 0.6$
Turbulent Flow:	$Nu_x = 0.0308 Re_x^{4/5} Pr^{1/3}$	Valid for $0.6 \le \Pr \le 60$
	$\overline{\text{Nu}}_{\text{L}} = 0.664 \text{Re}_{\text{L}}^{1/2} \text{Pr}^{1/3}$	Valid for $0.6 \le \Pr \le 60$
Evaluate properties at film temperature $T_f = \frac{T_s + T_{\infty}}{2}$		

CYLINDERS IN CROSS FLOW

Hilpert Correlation:

$\overline{Nu}_D = C \operatorname{Re}_D^m \operatorname{Pr}^{1/3}$	Valid for $Pr \ge 0.7$	
C and m are evaluated using Table 7.2.		
• May be used for non-circular cylinders in cross flow of a gas		

- (see Table 7.3 for characteristic length D, C and m values).
- Evaluate properties at T_f.

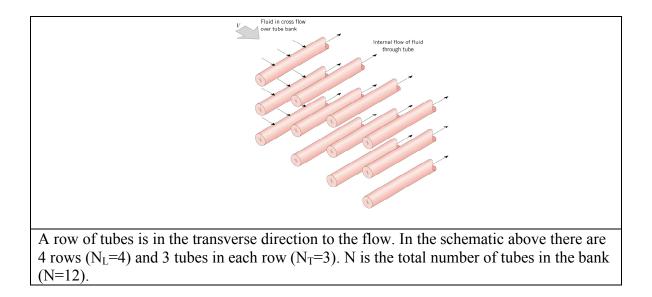
Zukauskas Correlation:

$$\overline{\text{Nu}}_{\text{D}} = \text{CRe}_{\text{D}}^{\text{m}} \text{Pr}^{n} \left(\frac{\text{Pr}}{\text{Pr}_{\text{s}}}\right)^{1/4} \qquad \text{Valid for } 0.7 \leq \text{Pr} \leq 500$$

$$1 \leq \text{Re}_{\text{D}} \leq 10^{6}$$
• C and m are evaluated using Table 7.4.

- n=0.37 for $Pr \le 10$ and n=0.36 for Pr > 10
- Evaluate properties at T_{∞} except Pr_s , which is evaluated at T_s .

Churchill and Bernstein Correlation:


$$\overline{Nu}_{D} = 0.3 + \frac{0.62Re_{D}^{1/2}Pr^{1/3}}{\left[1 + \left(0.4/Pr\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{Re_{D}}{282,000}\right)^{5/8}\right]^{4/5}$$
 Valid for Re_DPr > 0.2
Evaluate properties at T_f.

SPHERE

Whitaker correlation:

$$\overline{\text{Nu}}_{\text{D}} = 2 + \left(0.4 \,\text{Re}_{\text{D}}^{1/2} + 0.06 \,\text{Re}_{\text{D}}^{2/3}\right) \text{Pr}^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4} \qquad \begin{array}{c} \text{Valid for } 0.71 \le \text{Pr} \le 380 \\ 3.5 \le \text{Re}_{\text{D}} \le 7.6 \times 10^4 \\ 1.0 \le (\mu/\mu_s) \le 3.2 \end{array}$$

Evaluate properties at T_∞ except μ_s , which is evaluated at T_s

SPECIAL GEOMETRIES: FLOW ACROSS BANKS OF TUBES

Aligned	Staggered
$V_{\max} = \frac{S_T}{S_T - D} V$	If $S_D = \left[S_L^2 + \left(\frac{S_T}{2}\right)^2\right]^{1/2} < \frac{S_T + D}{2}$ $V_{max} = \frac{S_T}{2(S_T - D)}V$
Re _{D,max} =	$2(S_D - D)$ Otherwise use equation for aligned

$$\overline{Nu}_D = C_I Re_{D,max}^m Pr^{0.36} \left(\frac{Pr}{Pr_s}\right)^{1/4}$$

 C_1 and m are obtained from Table 7.5 Valid for $N_L \geq 20;\,1000 < Re_{D,max} < 2 \ x \ 10^6;\, 0.7 < Pr < 500$ Evaluate properties at the arithmetic mean of the inlet and outlet temperatures except Prs, which is evaluated at $T_s.$

For N_L < 20, use
$$\overline{Nu}_D\Big|_{(N_L < 20)} = C_2 \overline{Nu}_D\Big|_{(N_L \ge 20)} (C_2 \text{ from Table 7.6 })$$

Equations for flow across a band of tubes:

$$\Delta T_{lm} = \frac{\left(T_s - T_i\right) - \left(T_s - T_o\right)}{\ln\left(\frac{T_s - T_i}{T_s - T_o}\right)} \quad \text{where, } T_o = T_s - \left(T_s - T_i\right) \exp\left(-\frac{\pi D N \overline{h}}{\rho V N_T S_T c_p}\right)$$
$$q' = N(\overline{h}\pi D \Delta T_{lm}) \quad \Delta p = N_L \chi \left(\frac{\rho V_{max}^2}{2}\right) f$$